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ABSTRACT 
In this paper, we propose a method of robustification of the initial 
polynomial form of the generalized predictive law (GPC) for a 
permanent magnet synchronous machine (PMSM). For this, the 
procedure consists of the following three steps: 
 First, synthesis of an initial predictive controller to ensure a better 
follow-up of the properties of the closed-loop system. 
Secondly, a robust H∞ controller is synthesized by solving the 
mixed sensitivity problem by using the two Riccati equations to 
ensure a better dynamics in regulation. Third, the two previous 
controllers are combined, using Youla's parameterization to 
determine a robustified GPC controller. This controller should 
simultaneously satisfy the same better tracking dynamics of the 
initial GPC predictive controller. In addition, it should provide the 
same robustness of the robust H∞ controller. To validate the 
efficiency of this method, a permanent magnet synchronous 
machine (PMSM), which presents a real process, The dynamic 
behavior of the proposed process is modeled by an uncertain 
model. In our case the nominal model is used for the synthesis of 
the GPC controller with and without noise, thus used for the 
synthesis of the controller H∞. The system is controlled by the 
three previous controllers where their results are compared in the 
time and frequency domains. 

KEYWORDS 
GPC Controller, Robust Controller, Mixed Sensitivity 
Problem, Permanent Magnet Synchronous Machine. 
 
 
 
 
 
 
 
 
 

1  INTRODUCTION 
Generalized predictive control [1] is a very powerful method. It 
has been the subject of much research over the last decade. In the 
control of MIMO systems, it is generally suggested to use the 
CARIMA model (Integrated Controlled, Regressive, Auto-
Regressive) with the GPC [2], in which the expected behavior of 
the actual process can be predicts in an extended time horizon. 
The GPC law derives from the iterative resolution of two 
Diophant equations and the minimization of the quadratic 
criterion at each step [3]; [4].  
 
The GPC law can be transformed into an equivalent RST 
polynomial form. This transformation is highly desired in control 
engineering to reduce the recursive resolution of Diophant's 
equations and the ability to examine the stability and robustness of 
the performances, where the singular maximum values of its 
sensitivity and its complementary sensitivity functions are used in 
the frequency domain.   
Several works have been developed to control a nominal plant 
using GPC controllers, where a good tracking dynamic of the set 
point reference is guaranteed. Unfortunately, its stability and 
performance robustness are not ensured in a set of neighbouring 
plant cases [5]; [6]. Various design synthesis methods have been 
proposed also since the late of the nineties in order to resolve this 
problem. The C-polynomial of the CARIMA model to enhance 
the dynamic of the load disturbance inputs rejection is used by [7]. 
Unfortunately, this choice remains complicated for plants that are 
given by a transfer matrix of higher order. An additional 
parameter proposed called Q-parameter [5]; [6]; [8]; [9]. This 
parameter is introduced in order to achieve a good compromise 
between both the stability and the performances robustness.  
Stoica et al., (2008) propose a robustification method based on a 
constrained linear optimization where the designed controller is 
based on two-step procedures [10]. An initial GPC controller is 
first designed with a deterministic model, and its robustness is 
then enhanced via the Youla parameterization. This 
parameterization allows formulating frequency and time domain 
constraints as a convex optimization problem. Afterwards, this 
problem is approximated by a linear programming with inequality 
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constraints, and the optimal Q-parameter is derived. A 
disadvantage of this method is expressed by a hard choice of an 
optimal transfer matrix order of the Q-parameter which was 
determined after several trials. In addition, the optimal solution of 
the optimization search problem is not guaranteed. The 
convergence speed gets slowing down when approaching the 
optimal solution due to the higher number of the Q-parameter 
variables. These variables are determined by optimization and 
they depend on the plant dimension. Consequently, the 
computational cost increases exponentially as the optimization 
size increases and becomes rapidly prohibitive as the order of the 
Q-parameter increases, which leads to numerical ill-conditioning. 
This method requires also a good choice of the Q-parameter order 
which is very difficult to find and would be given after several 
trails.  
Knowing that, the 𝐻𝐻∞  control theory offers the possibility of 
including robustness considerations explicitly in the synthesis 
controller step [11]. The controller synthesis problem can be 
formulated as a LMIs optimization problem. Several works have 
shown the efficiency of the 𝐻𝐻∞  controller to control an uncertain 
plant. Its stability and performance robustness are guaranteed with 
better margins. Unfortunately, the obtained tracking dynamic of 
the set-point reference is degraded when their robustness margins 
are increased. In this paper, we propose a ruggedized GPC 
controller that assures the robustness of the 𝐻𝐻∞  controller while 
maintaining the GPC tracking dynamics preserved. The 
fundamental difference between the robustification method 
proposed in this paper and those available in the literature is how 
to determine the components of the Q parameter transfer matrix. 

2  DESIGN OF THE GPC LAW  
The GPC algorithm consists of applying a control sequence that 
minimizes a multistage cost function of the form [3]; [12], 
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Where 1N  and 2N  are the minimum and maximum costing 

horizons, Ψ  and λ  are the positive definite weighting matrices 

that penalize the errors and the control actions respectively, uN  

is the control horizon, ( )w t k+  is a future set-point or reference 

sequence and ˆ( )y t k t+  is the optimum k-step ahead prediction 
of the system output on data up to time t.  
In the MIMO case, the CARIMA model with ( m n× ) inputs-
outputs is defined by [3]; [12], 
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1( )C q −  is equal to the unity (i.e. 1( ) m mC q I−

×
= ). The optimum 

k-step ahead prediction over the costing horizon 21 k N≤ ≤  is 

given by 
1 1ˆ ( ) ( ) ( 1) ( ) ( ) ( 1)
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Where, kH , kF and jG  are the polynomial matrices in the 

backward shift operator 1q−  that determined from solving 
iteratively Diophantine equations. 

3  DESIGN OF THE INITIAL GPC 
CONTROLLER 

In the GPC algorithm, the receding horizon principle assume that 
only the ( )n  first component of the optimal control sequences 
resulting from the minimization of (1) are applied, so that at the 
next sampling time the same procedure is repeated. The obtained 
control law can be transformed to a RST structure that given as 
[1]; [5]; [12] 
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Where F and H are the polynomial matrices that defined by 

21[ , ..., ]T

NH H H= , 
21[ , ..., ]T

NF F F=  respectively. 1

1 ( )M q−  

is the (n) first component of the polynomial matrix
1( ) .T TG G Gλ −Ψ +  

Noticed that the better reference tracking performances of the 
initial GPC controller depends heavily by a good choice of the 

tuning parameters of the GPC law which are: 2N , uN , Ψ and λ .  
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More details for choosing these parameters are available in 
references [13] and [14]. 

4 YOULA PARAMETERIZATION 
In the next section, we assumed that the robustified GPC 

controller is presented by the polynomial matrices 1 1 1R S T . 

However, the initial one is presented by the polynomial matrices

0 0 0R S T . The proposed Youla parameterization is defined as [4], 

[15], 
1 1 1 1 1
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                              (7) 

Where 1( )Q q−  is the stable polynomial matrix to be determined. 
The feedback control systems before and after parameterization 
are shown as follows [9-13], 
 
 
 
 

 

Figure 1. Feedback control system based on initial 2-DOF-MGPC 
controller 

 
 
 
 
 
 
 
 
 

 

Figure 2. Feedback control system based on robustified 2-DOF-
MGPC controller 

Moreover, both previous diagrams are presented by the standard 
feedback control system that given as [16], 
 
 
 

 

Figure 3. Standard Feedback control system 

Where, ( )e t , ( )yd t  and ( )tη  are respectively the errors, the 

disturbances and the measurement noises. 1( )G q− , 1

0 ( )H q− , 

1

0 ( )K q− , 1

1 ( )H q−  and 1

1 ( )K q− are polynomial matrices that 

respectively defined by 
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According to figure 3, the output of the feedback control system 
can be expressed as 

1 1 1( ) ( ) ( ) ( ) ( ) ( ) ( )cl d y cy t G q w t S q d t S q tη− − −= + −
               (9) 

Where 
0/1

1( )clG q−  is the polynomial matrix that gives information 

on the tracking performances. 
0/1

1( )dS q− denotes the direct 

sensitivity matrix that provides the information on the NP against 

the load disturbances in low frequency range [17-19]. 
0/1

1( )cS q−  

is the complementary sensitivity matrix that gives the information 
on the RS toward the neglected dynamics and the effect of the 
measurement noises in high frequency range [17-19]. These 
polynomial matrices are defined by 
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The new complementary sensitivity matrix then defined as 

0
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Finally, the modified direct sensitivity matrix of the robustified 
GPC controller is defined by 
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Knowing that, the sum of the initial sensitivities that provided by 
the primary GPC controller is defined as 

0 0 1 1
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the same tracking performance (i.e. 
1 0cl clG G= ) by the 

robustified GPC controller. The above equation yields also, 

w  u  +
- 
 

 
1

0( )S −∆

 

+  
+ 
 

yd  

y
 

η
 

+
  

 
 

0T
 

0R
 

1( )A −

 

e
 1q B−

 

1( )T
 u  1

0( )S −∆

 

1( )A −

 

e  1q B−

 
 

+
+ 
 

1
1( )S −∆

 w  +
- 
 

 0T
 

 

0R
 

Q∆
 

A
 

+
+ 
 

+
  

 
 

yd  
y

 

η
 

+
  

 
 

1( )R  
Q∆

 
B

 

 w
 

+  
+ 
 

u
 

yd
 

+ 
- 
 

y
 G

 
0/1K

 +  
+ 
 

η
 

0/1H
 

e
 



Robustification of the generalized predictive law (GPC) by the 
implicit application of the H∞ method M. Aidoud et al. 

 

 
 

1 0

1 1( ) ( )cl clG q G q− −= . We notice that, a perfect template of 

direct sensitivity matrix is achieved when their maximal singular 
values are vanishing as much as possible in low-frequencies and 
approach to unity in high-frequencies[20]; [21]. On the other 
hand, the ideal form of the complementary sensitivity matrix is 
achieved when their maximal singular values are vanishing as 
much as possible in high-frequencies and approach to unity in 
low-frequencies[20], [21]. Consequently, aaccording to (7), (8) 
and (10), the robustness proprieties given by the initial GPC 
controller can be improved using an optimal Q-parameter whereas 
their reference tracking proprieties are always conserved. These 
assumptions are confirmed by the following proofs which are: 

5 DESIGN OF THE H∞ CONTROLLER 
In this section, the feedback part of the 2-DOF-MGPC controller 
is designed to meet robust stability and disturbance rejection 
requirements in a manner similar to the one Degree-Of-Freedom 

loop-shaping design procedure. Thereby, the robust H∞ control 

design is used to achieve the better robustness properties. Its 
generalized feedback control system is given as [18-19], 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4. H∞ generalized feedback control system 

Where inz and outz are respectively the exogenous input and 

exogenous output of the generalized plant 1( )P q− . fw  denotes 

the filtering set-point reference. The robust stabilizing H∞ 

controller called 1( )HK q−  is determined from minimizing the 

H∞-norm of the weighted- mixed sensitivity problem (14) using 
the DHINFLMI function of the MATLAB software [22]. This 
optimization problem is defined as [23], 
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This is equivalent to the numerical inequality [23], 
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Where eT  and γ are respectively, the sampling time and the 

better H∞ performance level. SW and TW are respectively, the 

weighting matrices that penalize the error and the controlled 
output [33-34]. 

 1( )
Hd m m HS I GK −

×
= +  and 1( )

Hc H m m HS GK I GK −

×
= +  are 

the direct sensitivity and the complementary sensitivity matrices 
that given by the H∞ controller. 
The objective here is to determine the Youla matrix by direct 
comparison between the sensitivity matrices provided by the 
controller H and those provided by the robustified predictive 
controller. 
To achieve this goal, it suffices to ensure the equality of the two 
direct sensitivities (or complementary) of the two previous 
controllers, in fact to highlight the ideal matrix of Youla 
𝑄𝑄𝑖𝑖𝑖𝑖é𝑎𝑎𝑎𝑎 (𝑞𝑞−1). It is then necessary to satisfy the condition below: 
𝑆𝑆𝑐𝑐1(𝑧𝑧−1) = 𝑆𝑆𝑐𝑐𝐻𝐻(𝑧𝑧−1)                                                                (16) 
The polynomial matrix of the Q-parameter is then determined as 
follow: 

0

1 1
0 ( )( )

Hc c m mQ R S S I A− −
×= − ∆                                            (17) 

6 SIMULATION RESULTS AND DISCUSSION 
The process to be controlled presents the Permanent Magnet 
Synchronous Machine. In order to obtain a simpler formulation 
and to reduce the complexity of the machine model, the 
establishment of its mathematic model will be developed on the 
basis of the assumptions that: 
- The motor has a symmetrical unsaturated reinforcement, the 
clean and mutual inductances are independent of the currents 
flowing in the different windings. 
- The distribution of electromotive forces along the gap is 
assumed to be sinusoidal. 
-  The losses of iron and the damping effect are neglected. 
-  The permeability of magnets is considered close to that of air. 
The excitation being carried out by a permanent magnet, so that 
the excitation flux is considered constant. 
 In addition, the magnet is considered as a winding with no 
resistor or inductance proper and mutual, but as a flux source [24]. 
Equations of tensions and flux: 
Three-phase voltages, stator flows and currents are written with 
the following vector notations Vs , Is and Φs  respectively.  
The voltage equation in the stator frame is written [25] ; [26]. 
𝑉𝑉𝑠𝑠 = 𝑅𝑅𝑠𝑠𝛪𝛪𝑠𝑠 + 𝑖𝑖

𝑖𝑖𝑑𝑑
𝛷𝛷𝑠𝑠                                                                     (18) 

The stator and rotor flows have for expression: 
𝛷𝛷𝑠𝑠 = 𝐿𝐿𝑠𝑠𝑠𝑠𝛪𝛪𝑠𝑠 +𝛷𝛷𝑓𝑓                                                                         (19) 
The electrical equations in the park plan:  
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𝑉𝑉𝑖𝑖𝑠𝑠 = 𝑅𝑅𝑠𝑠 𝐼𝐼𝑖𝑖𝑠𝑠 + 𝐿𝐿𝑖𝑖𝑠𝑠

𝑖𝑖
𝑖𝑖𝑑𝑑
𝐼𝐼𝑖𝑖𝑠𝑠 −  𝜔𝜔𝐿𝐿𝑞𝑞𝑠𝑠 𝐼𝐼𝑞𝑞𝑠𝑠

𝑉𝑉𝑞𝑞𝑠𝑠  =  𝑅𝑅𝑠𝑠 𝐼𝐼𝑞𝑞𝑠𝑠  + 𝑖𝑖
𝑖𝑖𝑑𝑑
𝛷𝛷𝐼𝐼𝑞𝑞𝑠𝑠 +𝜔𝜔𝐿𝐿𝑖𝑖𝑠𝑠 𝐼𝐼𝑖𝑖𝑠𝑠 +  𝜔𝜔𝛷𝛷𝑓𝑓

�                         (20) 

Expression of power and electromagnetic torque in the park plan 
𝐶𝐶𝑒𝑒 =  2

3
𝑝𝑝[𝐿𝐿𝑖𝑖𝑠𝑠 − 𝐿𝐿𝑞𝑞𝑠𝑠)𝐼𝐼𝑖𝑖𝑠𝑠𝐼𝐼𝑞𝑞𝑠𝑠 + 𝛷𝛷𝑓𝑓𝐼𝐼𝑞𝑞𝑠𝑠                                           (21) 

The equation of motion of the machine is: 
𝐶𝐶𝑒𝑒 − 𝐶𝐶𝑟𝑟 − 𝑓𝑓𝜴𝜴 = dΩ

dt
                                                                    (22) 

According to equations (20), (21) and (22), we obtain the 
following system of equations 

⎩
⎪⎪
⎨
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⎧

𝑖𝑖
𝑖𝑖𝑑𝑑
𝐼𝐼𝑖𝑖𝑠𝑠 = 1

𝐿𝐿𝑖𝑖𝑠𝑠
�𝑉𝑉𝑖𝑖𝑠𝑠 − 𝑅𝑅𝑠𝑠𝐼𝐼𝑖𝑖𝑠𝑠 +𝑤𝑤𝐿𝐿𝑞𝑞𝑠𝑠𝐼𝐼𝑞𝑞𝑠𝑠 �

𝑖𝑖
𝑖𝑖𝑑𝑑
𝐼𝐼𝑞𝑞𝑠𝑠 = 1

𝐿𝐿𝑞𝑞𝑠𝑠
�𝑉𝑉𝑞𝑞𝑠𝑠 − 𝑅𝑅𝑠𝑠𝐼𝐼𝑖𝑖𝑠𝑠 + 𝐿𝐿𝑖𝑖𝑠𝑠𝑤𝑤𝐼𝐼𝑖𝑖𝑠𝑠 + 𝑤𝑤Ф𝑓𝑓�

𝐶𝐶𝑒𝑒 = 3
2
𝑝𝑝��𝐿𝐿𝑖𝑖𝑠𝑠 − 𝐿𝐿𝑞𝑞𝑠𝑠 �𝐼𝐼𝑖𝑖𝑠𝑠 . 𝐼𝐼𝑞𝑞𝑠𝑠 + Ф𝑓𝑓𝐼𝐼𝑞𝑞𝑠𝑠 �

𝐶𝐶𝑒𝑒 − 𝐶𝐶𝑟𝑟 − 𝑓𝑓Ω = 𝐽𝐽 𝑖𝑖Ω
𝑖𝑖𝑑𝑑

�                         (23) 

As can be seen in Figure 5 [27]:  
According to equations (23), control the speed of the PMSM, 
since the transfer function of the machine can be represented in 
the continuous plane by the following transfer: 
 

Gc(𝑠𝑠) =
(200 ∗ 𝐾𝐾𝑑𝑑 ∗ 𝑠𝑠 + 40 ∗ 𝐾𝐾𝑑𝑑)

(𝐽𝐽 ∗ 𝐿𝐿 ∗ 𝑠𝑠^3 + (𝐵𝐵 ∗ 𝐿𝐿 + 𝐽𝐽 ∗ (200 ∗ 𝐾𝐾𝐾𝐾 + 𝑅𝑅𝑠𝑠)) ∗ 𝑠𝑠^2 + (𝐵𝐵 ∗ (200 ∗ 𝐾𝐾𝐾𝐾 + 𝑅𝑅𝑠𝑠) + 40 ∗ 𝐾𝐾𝐾𝐾 ∗ 𝐽𝐽 +𝐾𝐾𝑤𝑤 ∗ 𝐾𝐾𝑑𝑑) ∗ 𝑠𝑠 + 40 ∗ 𝐾𝐾𝐾𝐾 ∗ 𝐵𝐵) 

 
Knowing that the parameters of the PMSM are given as follows: 
𝑅𝑅𝑠𝑠 = 1.4;  𝐿𝐿 = 𝐿𝐿𝑖𝑖𝑠𝑠 = 𝐿𝐿𝑞𝑞𝑠𝑠 = 0.0066;  𝐽𝐽 = 0.00156;   
𝐵𝐵 = 0.00038818;  𝑃𝑃 = 6; 𝜙𝜙𝑓𝑓 = 0.175;  𝐾𝐾𝑤𝑤 = 𝐿𝐿;  
𝐾𝐾𝑑𝑑 = 3

2
∗ 𝑃𝑃 ∗ 𝜙𝜙𝑓𝑓 ;  𝐾𝐾𝐾𝐾 = 𝑅𝑅𝑠𝑠 ;  

So, 

𝐺𝐺𝑐𝑐(𝑠𝑠) = 3.144𝑒𝑒07𝑠𝑠+6.287𝑒𝑒06

𝑠𝑠3+6.921𝑒𝑒05𝑠𝑠2+2.244𝑒𝑒05 𝑠𝑠+1.722𝑒𝑒04  
The discretization of the transfer function gives: 

𝐺𝐺𝑖𝑖(𝑞𝑞) = 0.001754  𝑞𝑞3+0.001754  𝑞𝑞2−0.001754  q−0.001754
𝑞𝑞3−1.07 𝑞𝑞2−0.8605 𝑞𝑞+0.9302

  

The initial GPC is synthesized with the parameters: 
𝑁𝑁1 =  1,𝑁𝑁2 =  15,𝑁𝑁𝑁𝑁 =  2, 𝜆𝜆 =  0.005 
𝑅𝑅 =  549.8 −  499.9 𝑞𝑞−1 −  472.2 𝑞𝑞−2 +  436.2 𝑞𝑞−3 
𝑆𝑆 =  1 −  0.4468 𝑞𝑞−1  −  1.515 𝑞𝑞−2  −  0.8223 𝑞𝑞−3 
𝑇𝑇 =   1.526 +  1.441 𝑞𝑞−1 +  1.357 𝑞𝑞−2   +  1.272 𝑞𝑞−3

+  1.188 𝑞𝑞−4 +  1.104 𝑞𝑞−5 +  1.02 𝑞𝑞−6

+  0.9346 𝑞𝑞−7 +  0.8507 𝑞𝑞−8 +  0.7657 𝑞𝑞−9

+  0.6819 𝑞𝑞−10 +  0.5967 𝑞𝑞−11

+  0.513 𝑞𝑞−12 +  0.4277 𝑞𝑞−13 +  0.187 𝑞𝑞−14 
The weights of the system is given by  

𝑊𝑊𝑠𝑠 =  100 𝑠𝑠 + 1.2 𝑒𝑒04

 120 𝑠𝑠 + 0.0012  
 and  WT  =    8.333𝑒𝑒06 s+ 6.944 𝑒𝑒09

 833.3 s + 8.333𝑒𝑒09  
Figure 6 shows the block diagram of speed regulation of the 
PMSM by two GPC and H∞ type regulators, and the currents by 
PI type regulators. 
 

  
 

Figure 5.  Block diagram of a voltage-fed PMSM 
 

 
Figure 6.  block diagram of speed regulation of the PMSM 
 

 
Figure 7.  The direct sensitivity of the initial GPC ,  H∞  and GPC 
robustifie 

 
Figure 8.  The complementary sensitivity of the initial GPC ,  H∞  
and GPC robustifie 
As shown in figure 7 and figure 8, the proposed Q-parameter 
ensures a perfect match between the maximal singular values of 
both sensitivities that given by the robustified GPC controller and 
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those given by the H∞ one. Therefore, the obtained robustness 
proprieties of initial GPC controller are modified by those given 
by the H∞ controller. Moreover, according to figure 7, the 
maximal singular values of direct sensitivity matrices that given 
by three previous controllers are bounded by its upper-bound, 

1 / [ ( )]SWσ ω at all frequencies. Similarly, the better Nominal 

Performances are provided by initial 2-DOF-MGPC controller. 

However, the 
0

[ ( )]
c

Sσ ω  exceeds its upper-bound, 1 / [ ( )]TWσ ω
at some frequencies except, which is illustrated by figure 8. Thus, 
this result can be explained in the time domain by a higher 
sensitivity of the feedback control system to the effect of the 
measurement-noises and high frequency neglected dynamic. 
Figure 8 also show that the Q-parameter has the ability of 

decreasing slope the 
0

[ ( )]cSσ ω at higher frequencies. Hence, the 

maximal singular values, which are provided by robustified GPC 
controller, are reduced at frequencies beyond the system 
bandwidth in order to secure robustness at high frequency range.  
 

 
Figure 9. Comparative simulation results between the three 
controllers during a no-load start for a setpoint of 100 r/s. 

 
Figure 10. The results of the comparative simulation between the 
three correctors during a load start at t = 0.012s for a speed 
reference of 100 r/s 
 

 
Figure 11. Comparative simulation results between the three 
correctors during a no-load start-up start with a noise at t = 0.012 
s for a speed reference of 100 r/s. 
 

 
Figure 12. Comparative simulation results between the three 
correctors during a no-load start for a speed reference of 100 r/s 
with set point inversion -100 r/s. 
 
 

 
Figure 13. Comparative simulation results between the three 
correctors during a load start at t = 0.009s for a speed reference of 
100 r/s with the inversion of the setpoint (-100 r/s). 

 
Figure 14. Comparative simulation results between the three 
correctors during a vacuum start with a noise at t = 0.009s for a 
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speed reference of 100r/s with the inversion of the setpoint (-100 
r/s). 
According to the figures 9 to 14, its can be seen that the noise has 
an effect on the speed controlled by the initial GPC corrector in 
the event of a noisy signal and loss of speed, on the other hand the 
corrective GPC corrector and the H∞ corrector, they are robust 
against noise and uncertainty.  
It is easy to confirm that the proposed Q parameter improves the 
robustness of the stability of the initial GPC controller where the 
measurement noises are completely rejected in the steady state. 
Otherwise, the best time performance is provided by a robustified 
GPC controller. It is explained by a fast reference tracking 
dynamics under transient conditions, fast rejection of disturbances 
and good attenuation of the effect of noise measured. These 
performances are guaranteed by a regular control signal compared 
to those given by the robustified and the initial GPC controllers. 

7 CONCLUSION  

In this paper, we examine the application of three regulators, on a 
synchronous machine with permanent magnets (PMSM), the latter 
was modeled by the transformation of Parc. The three controllers 
are GPC-initial, H∞ and GPC-Robustifie. The simulation results 
obtained show that GPC-robustifie by specifying the Youla 
parameters using several closed-loop specifications provides a 
very satisfactory combination of trade-offs (robustness / 
performance), although there are disturbances and noise . 
Different tests were performed or the results of the simulation 
showed that GPC-robustifie was more powerful than GPC-initial 
and H∞.  
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