CV Boumaaza Messaouda

Nom et Prénom :	Boumaaza Messaouda
Dernier Diplôme et date d'obtention :	Doctorat Es Sciences
Spécialité :	Génie Civil
Grade :	MCA
Fonction :	Enseignante
Etablissement de rattachement :	Université 08 Mai 1945, Guelma
Tel mobile :	0676 51 74 54
Tel/fax :	
Mail :	boumaaza.messaouda@gmail .com
Domaines d'intérêts scientifiques:	Composite Material, Reinforced, Concrete, Civil Engineering, Materials, Reinforced mortar, Natural Fibres, Biocomposites, Drilling, Material Characterization, Mechanical Properties, Advanced Materials, Polymers, Epoxy Resins, Optimization.
Indiquer les publications réalisées durant les cinq (05) dernières années :	Assessment and prediction of water quality indices by machine learning-genetic algorithm and response surface methodology. https://doi.org/10.1007/s40808-024-02079-z
	Performance analysis of biochar and W. Robusta palm waste reinforced green mortar using response surface methodology and machine learning methods. https://doi.org/10.1016/j.conbuildmat.2024.137214
	Effects of incorporating cellulose fibers from Yucca treculeana L. on the thermal characteristics of green composites based on high-density poly-ethylene: An eco-friendly material for cleaner production. https://doi.org/10.1016/j.jmrt.2024.06.089
	ANN and RSM Prediction of Water Uptake of Recycled HDPE Biocomposite Reinforced with Treated Palm Waste W. filifera. https://doi.org/10.1080/15440478.2024.2356697
	Prediction of purified water quality in industrial hydrocarbon wastewater treatment using an artificial

neural network and response surface methodology. https://doi.org/10.1016/j.jwpe.2023.104757

Mechanical properties and statistical analysis of Syagrus Romanzoffiana palm cellulose fibers. https://doi.org/10.1177/00219983241231833

Weibull Statistic and Artificial Neural Network Analysis of the Mechanical Performances of Fibers from the Flower Agave Plant for Eco-Friendly Green Composites. <u>https://doi.org/10.1080/15440478.2024.2305228</u>

Environmentally mortar development using Washingtonia/biochar waste hybrid: mechanical and thermal properties. https://doi.org/10.1007/s13399-023-04743-3

Effect of Number of Tests on the Mechanical Characteristics of Agave sisalana Yarns for Composites Structures: Statistical Approach. https://doi.org/10.3390/polym15132885

Optimization of drilling process parameters of sisal/cork-reinforced epoxy biosandwich structure by multi-objective RSM and hybrid ANN-GA models. https://doi.org/10.1007/s00170-023-11791-6

Building Material in Circular Economy: The Suitability of Wood Waste in Bio-concrete Development. https://doi.org/10.1007/978-981-99-1905-5_9

Effects of alkaline treatment of Washingtonia mesh waste on the mechanical and physical properties of biomortar: experimental and prediction models. https://doi.org/10.1007/s13399-023-04221-w

Water Uptake of HDPE Reinforced with Washingtonia Fibre Biocomposites: Mathematical Modelling using Artificial Neural Network, Response Surface Methodology and Genetic Algorithm. https://doi.org/10.1080/2374068X.2023.2198828

Optimization of flexural properties and thermal conductivity of Washingtonia plant biomass waste biochar reinforced bio-mortar. https://doi.org/10.1016/j.jmrt.2023.02.009

Improving the Mechanical Performance of Biocomposite Plaster/ Washingtonia filifera: Optimization Comparison Between ANN and RSM Approaches. <u>https://doi.org/10.1080/15440478.2023.2170945</u>

Efect of jute fber length on drilling performance of biocomposites: optimization comparison between

RSM, ANN, and genetic algorithm. https://doi.org/10.1007/s00170-022-10801-3

Response Surface Methodology Optimization of Palm Rachis Biochar Content and Temperature Effects on Predicting Bio-Mortar Compressive Strength, Porosity and Thermal Conductivity.

https://doi.org/10.1080/15440478.2022.2162184

Optimization of Palm Rachis Biochar Waste Content and Temperature Effects on Predicting Bio-Mortar : ANN and RSM Modelling. https://doi.org/10.1080/15440478.2022.2151547

Effect of Water Absorption on the Behavior of Jute and Sisal Fiber Biocomposites at Different Lengths: ANN and RSM Modeling. https://doi.org/10.1080/15440478.2022.2140326

Modeling Moisture Absorption of Flax/Sisal Reinforced Hybrid Biocomposites Using Fick's and ANN Methods. https://doi.org/10.1080/15440478.2022.2140322

Drilling performance prediction of HDPE/Washingtonia fiber biocomposite using RSM, ANN, and GA optimization. https://doi.org/10.1007/s00170-022-10248-6

Mechanical Properties of Natural Cellulosic Yucca treculeana L. Fiber for Biocomposites Applications: Statistical Analysis. https://doi.org/10.1080/15440478.2022.2128505

Water Absorption Behavior of Jute Fibers Reinforced HDPE Biocomposites: Prediction Using RSM and ANN Modeling. <u>https://doi.org/10.1080/15440478.2022.2114976</u>

Delamination in drilling of jute/cork-reinforced polymer biosandwich materials: optimization by response surface methodology and genetic algorithm. https://doi.org/10.1007/s00170-022-10001-z

Drilling performance of short Washingtonia filifera fiber–reinforced epoxy biocomposites: RSM modelling. https://doi.org/10.1007/s00170-022-09849-y

Tensile Behavior and Statistical Analysis of Washingtonia Filifera Fibers as Potential Reinforcement for Industrial Polymer Biocomposites. https://doi.org/10.1080/15440478.2022.2069189 Systematic Review on Reinforcing Mortars with Natural Fibers: Challenges of Environment-Friendly Option. https://doi.org/10.1080/15440478.2022.2060408

Comparative study of flexural properties prediction of Washingtonia filifera rachis biochar bio-mortar by ANN and RSM models. https://doi.org/10.1016/j.conbuildmat.2021.125985

Drilling of a bidirectional jute fibre and cork-reinforced polymer biosandwich structure: ANN and RSM approaches for modelling and optimization. https://doi.org/10.1007/s00170-021-07679-y.

Experimental investigation and optimization of delamination factors in the drilling of jute fiber-reinforced polymer biocomposites with multiple estimators. <u>https://doi.org/10.1007/s00170-021-07628-9</u>.

The effect of alkaline treatment on mechanical performance of natural fibers-reinforced plaster: Optimization using RSM. https://doi.org/10.1080/15440478.2020.1724236.

The effect of alkaline treatment on mechanical performance of natural fibers-reinforced plaster: Part II optimization comparison between ANN and RSM statistics.

https://doi.org/10.1080/15440478.2021.1964129.

The Effect of Geometry on the Flexural Properties of Cellular Structures Reinforced with Natural Fibres: Statistical Approach. https://doi.org/10.1080/15440478.2021.1964134.

Improving the mechanical performance of biocomposite plaster/ Washingtonian filifira fibres using the RSM method. https://doi.org/10.1016/j.jobe.2020.101840.

Mechanical characterization and optimization of delamination factor in drilling bidirectional jute fibre-reinforced polymer biocomposites. https://doi.org/10.1007/s00170-020-06217-6.

Behavior of pre-cracked deep beams with composite
materialsDOI:
DOI:
https://doi.org/10.12989/sem.2017.63.5.575.

Statistical Analysis of 3-Point Bending Properties of Polymer Concretes Made From Marble Powder Waste,

Sand Grains, and Polyester Resin. <u>DOI</u> <u>10.1007/s11029-018-9703-2.</u>

•