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ABSTRACT 
In this paper, we propose a new method for robustification of 
generalized internal model control (GIMC) for the stabilization 
and tracking of a Hydraulic Actuator system, which using ܪஶ mix 
sensitivity, to design the control system of the Hydraulic Actuator. 
It is well known that there is an intrinsic conflict between 
performance and robustness in the standard feedback framework. 
Generalized internal model controller is a new architecture which 
can separate the performance and robustness design in controller 
design. This architecture has two parts in this paper: a high 
performance controller, which is designed by PI controller, and 
then a robustification controller, which is designed by using ܪஶ 
mix sensitivity controller design method. We also present the 
steps of controller design by using this method to make it easier to 
use. Based on the proposed method, numerical simulation are both 
carried out for a gyro stabilized Hydraulic Actuator tacking 
system. The numerical simulated result show that the Hydraulic 
Actuator using robustification of generalized internal model 
control based on the ܪஶ  mix sensitivity controller design is 
accurate and effective. Comparing with the same PI controller in 
standard feedback framework, the proposed method can guarantee 
the high tracking performance as same as the PI controller and 
improve the external disturbance restraining ability a lot. In 
conclusion, Robustification of generalized internal model control 
(GIMC) based on the ܪஶ  method is a new approach for the 
stabilization and tracking of a Hydraulic Actuator system. 
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1  INTRODUCTION 

Among the problems that the control of physical systems 
poses, that of the synthesis of the laws of control performing with 

regard to the precision but also sufficiently robust to ensure the 
stability. The diversity of control structures is related to the 
objectives set, on the one hand, and the constraints on the quality 
of the process model. The Internal Model Control (IMC) design 
method uses observation in a specialized way to introduce a 
simple and effective design technique for robust feedback 
controllers. The IMC design method for zero-axis zero stable 
plants allows a controller in principle to obtain a closed-loop 
shape of magnitude equal to the desired transfer function (Morari 
& Zafiriou, 1989) [1]. The term IMC is used because, as defined 
the controller can be considered as a combination of two 
elements, one being a model of the plant. Generally in the 
standard feedback framework, there is an intrinsic conflict 
between performance and robustness [2]. For this, a compromise 
must be made between the nominal performance and robust 
stability against external disturbances and modeling uncertainties. 
For this reason, K. Zhou proposed a new controller structure 
called generalized internal model control (GIMC) [3]. After that, 
many scholars make a scrutiny into GIMC. This control structure 
is widely used in many domains as a method, which could 
improve external disturbance restraining ability, such as 
mechatronic system, magnetic suspension systems and motion 
control etc [4]. A direct design from input/output data of the youla 
parameter for compensating plant perturbation on GIMC structure 
was proposed in [5]. Meanwhile, worst-case robust control design 
techniques such as H∞ control, have gained popularity in the last 
thirty years because of the robustness against model uncertainties 
and external disturbances [6]. Unfortunately, most robust control 
design techniques are based on the worst possible scenario which 
may never occur in a particular control system and it usually 
cannot achieve at the expense of performance [7]. In this paper, 
we study a method [8], combining the ܪஶ method with GIMC for 
the design of a controller for hydraulic actuator against external 
disturbances [9]. Then, the structure of the GIMC  is described to 
analyze its robust stability conditions. The details of the ܪஶ 
method on the structure of the GIMC are presented. Then, a 
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numerical simulation step is presented. Finally, we conclude this 
paper by emphasizing the highlights of the design method. 

2. GIMC STURCTURE 

2.1 GIMC control structure 

 

 

 

 

 

Figure 1: Standard feedback configuration 

A standard feedback configuration [10] is shown in Figure 1 
where ܩ   is a linear time invariant plant and ܭ is a linear time 
invariant controller. It’s well known that the object model ܩ is not 
perfectly obtained generally. What we actually obtains is a 
nominal model  ܩே  . We assume that ܭ଴  could stabilize the 
nominal plant ܩே  and assume ܩே  and ܭ଴  have the following 
coprime factorizations [11]: ቊ ଴ܭ = ܷܸିଵ = ෨ܸ ିଵ ෩ܷܩ଴ = ଵିܯܰ = ෩ିଵܯ ෩ܰ                                                               (1) 

From the Youla controller parameterization [12], every stabilizing 
controller for ܩ଴ can be written in the following form: ܭ =  ( ෨ܸ  − ܳ ෩ܰ )ିଵ( ෩ܷ  +  ෩ )                                                 (2)ܯܳ

For some ܳ ∈ )ݐ݁݀ ஶ  such thatܪ ෨ܸ  − ܳ ෩ܰ )  ≠  0 , or 
equivalently: ܭ =  (ܷ + – ൫ܸ(ܳܯ  ܰܳ൯ିଵ

                                                    (3) 

For some ܳ ∈ ܸ)ݐ݁݀ ஶ  such thatܪ − ܰܳ) ≠ 0 . 
K. Zhou proposed the controller which is presented in formula (2), 
as shown in figure 2 [13], 

 

 

 

 

 

 

 

Figure 2: Generalized internal model control structure 

The controller configuration illustrated in Figure 2 called 
generalized internal model control structure (GIMC). The 
distinguished feature of this controller implementation is that if 
there are not modeling uncertainties, i.e., if  ܩ =  ே , the innerܩ 
loop feedback signal ݂ is always zero, i.e., ݂ =  0  . A high 

performance and disturbance restraining system can be designed 
in two steps:  

(a) Design  ܭ଴ to satisfy the system performance specifications 
with a nominal pant model. 

(b)  Design ܳ to improve the ability of anti-disturbance.  

The standard Youla controller parameterization, ෩ܷ , ܸ , ෩ܷ and ܸ are chosen in particular: ൜ ෩ܷܰ + ෨ܸܯ = ෩ܷܰܫ + ෩ܸܯ =  (4)                                                                       ܫ

However, we don’t have to satisfy the restraining presented in 
formula (4) when  ܭ଴  stabilizes internally the feedback system 
shown in Figure 1. In this paper, we have definitions as follow: ቊ ෩ܷ = ଴,    ෨ܸܭ ିଵ = ෩ܰܫ = ෩ܯ     ,ேܩ = ܫ                                                                 (5) 

Then we propose a new GIMC control structure shown in 
Figure 3 which makes formula (5) into Figure 2 [8]. 

 

 

 

 

 

 

 

Figure 3: Reconfigurable GIMC control structure 

In the system illustrated in Figure 3, we can obtain the transfer 
function from ݎ to ݕ is [14]: 

௬ܶ௥ = ௄బீଵା௄బீା(ீିீಿ)ொ                                                              (6) 

For the external disturbance d, the inner loop feedback and 
outer loop feedback are active at the same time. The transfer 
function from ݀ to ݕ is [14] : 

௬ܶௗ = ଵା(ீିீಿ)ொଵା௄బீା(ீିீಿ)ொ ∙ ଵିீಿொଵା(ீିீಿ)ொ                                           (7) 

The formula (6) and (7) reveal that if there is no modeling 
uncertainty [7], [14] and [15] the transfer function ௬ܶ௥  is the same 

with it in the standard feedback configuration in Figure 1 and  ௬ܶௗ 
is different because of the inner loop feedback. The external 
disturbance rejection ratio of the system shown in Figure 3 is the 
sum of inner loop and outer loop 

2.2 Robust stability of GIMC control  

The relative error of plant model is defined as follows: 

|ீ(௝௪)ିீಿ(௝௪)||ீಿ(௝௪)| = |(ݓ݆)ܪ| ≤  (8)                                               ߛ
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In the formula (8), ߛ presents the upper limit of the relative 

plant model error, i.e. ߛ =  .ே is nominal modelܩ ,  (|(ݓ݆)ܪ|) ݌ݑݏ

Plant multiplicative uncertainty is described in formula (8), and 

Figure (3) can be revealed as follows [7]: 

 

 

 

 

 

 

Figure 4: GIMC control structure with multiplicative 
uncertainty 

By using the Small Gain Theorem, the sufficient condition for 

robust stabilization in the system as shown in Figure 4 can be 

obtained: | ௭ܶ௪| = ቚ ఊ(௄బீಿିொீಿ)ଵା௄బீబାொ(ீబିீబ)ቚ = ߛ ቚீಿ(௄బିொ)ଵା௄బீಿ ቚ <  (9)          ݓ∀       1

ቚீಿ(௄బିொ)ଵା௄బீಿ ቚ < ଵఊ  (10)                                                       ݓ∀          

  ஶ CONTROLLERܪ .3
Due to the analysis in previous section, we know that we can 

design the outer loop feedback controller ܭ଴  and inner loop 

feedback controller ܳ  independently. When if there is no 

modeling uncertainty, the inner loop feedback cannot affect on the 

transfer feature from ݎ to ݕ which is on the behalf of the system 

performance. The outer loop feedback controller ܭ଴  can be any 

form of controllers that can stabilize the nominal plant ܩே . In this 

paper, we choose a simple ܲI controller [7]. For the design of 

inner loop feedback regulator ܳ , we use ܪஶ  mix sensitivity 

controller design method. Since inner loop feedback does almost 

not affect on system performance and it just affect on the external 

disturbance restraining ability. From the formula (7), we realize 

that the external disturbance rejection ratio of the system shown in 

Figure 3 is sum of outer loop feedback and inner loop feedback. 

Then we can design the inner loop feedback regulator ܳ 

independently and make outer loop open at the same time. 

 

 

 

 

 

 

 

 

 

Figure 5: ۶∞ mix sensitivity problem  

In Figure 5, ଵܹ( ݏ)  presents norm bound of system 

disturbance rejection ratio, corresponding to the norm bound of 

the system sensitivity function. ଷܹ( ݏ) Presents the norm bound 

of plant multiplicative uncertainty, corresponding to the norm 

bound of complementary sensitivity ܶ . ଶܹ( ݏ) Presents the norm 

bound of plant additive uncertainty, corresponding to the function ܴ in ܪஶ mix sensitivity problem [7], [15], [16]. 

Now we can make the control structure illustrated in Figure 5 

described in the standard framework of the weighted mix 

sensitivity problem: 

቎ݖଵݖଶݖଷ݂቏ = ൦ ଵܹ ଵܹܩ଴0 ଶܹ0−ܫ ଷܹܩ଴0 ൪ ቂ݀ݑቃ                                                     (11) 

ݑ = ܳ. ݂                                                                               (12) 

From the formula (11), we can obtain the generalized plant: 

଴ܲ = ൦ ଵܹ ଵܹܩ଴0 ଶܹ0−ܫ ଷܹܩ଴0 ൪                                                              (13) 

The Figure 5 can be redrawn as follows: 

 

 

 

 

 

Figure 6: Standard ۶∞ control framework 

Then the closed loop transfer function matrix based on 

formula (11) and (12) is: 

ܲ = อ ଵܹܵଶܹܴଷܹܶอ                                                                           (14) 
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ஶܪ  mix sensitivity problem is [17], [18]: find the rational 

function of the controller ܳ that stabilizes the closed loop system 

and satisfies: min ‖ܲ‖ஶ  ݎ݋ ‖ܲ‖ஶ ≤ ߛ) ߛ >  ଴)                                  (15)ߛ

In formula (15), the former called ܪஶ optimization problem 

and the latter called ܪஶ suboptimization problem. 

In general, the ܪஶ  nix sensitivity problem can be 

reconfigurable as follows: 

อ ଵܹܵଶܹܴଷܹܶอ ≤ 1                                                                           (16) 

In our paper, the weighted matrixes are chosen in frequency. 

From this paper: ଵܹ present the spectrum characteristic of external disturbance 

and it has low pass property. ଷܹ  has high-pass property and it can guarantee the high 

frequency disturbance rejection ability of the closed loop system; 

 ଶܹ  presents the norm bound of plant additive uncertainty, 

and it’s a constant in general for reducing the controller orders. 

In next section, we take the numerical simulation for the 

hydraulic actuator stabilization and tracking by using method 

proposed previously and analyze the results in detail. 

4. SIMULATION  

4.1 Model for hydraulic actuator   

In this section, the GIMC are applied to an hydraulic actuator 

(benchmark problem, see [14]) where its dynamic behaviour is 

modelled by the following nominal plant-model: ܩே(ݏ) = ଽ଴଴଴௦యାଷ଴௦మା଻଴଴௦ାଵ଴଴଴                                                 (17) 

Knowing that, all uncertainties that affect the above process 

have been modeled as an unstructured-multiplicative model called 

also ∆(ݏ) which is satisfied the following condition: ‖∆(ݏ)‖ஶ = ቛீ(௦)ିீಿ(௦)ீಿ(௦) ቛஶ < 1                                          (18) 

Where (ݏ)ܩ denotes the perturbed system. 

4.2 Result of the numerical simulation 

The outer loop controller ܭ଴  in Figure 3 is PI controller: ܭ଴ = ଴.଺ସହ଼ (௦ାଵ.ହଵ଺)௦                                                             (19) 

The ଵܹ , ଶܹ , ଷܹ is respectively: 

ଵܹ = ଴.ଵଵଵଵ ௦^ଶ ା ଺.଺଺଻ ௦ ା ଵ଴଴௦^ଶ ା ଶ ௦ ା ଵ                                                 (20) 

The disturbance rejection ratio with inner loop feedback 

regulator Q is almost 50dB. 

ଷܹ = ଽ.ସଽସ ௦ ା ଽସ.ଽସ௦ ା ଷ଴଴                                                                (21) 

ଶܹ = [ ],                                                                              (22) 

From the calculation, ߛ = 0.9593 . Then the inner loop 

feedback regulator Q is: 

ܳ = ଵ.ଵଷଷ௘ଵଵ ௦ళା ଼.ହହଶ௘ଵଶ ௦లା ଷ.଺ହ଼௘ଵସ ௦ఱା ଽ.଴ଵଽ௘ଵହ ௦రା ଵ.ଷଽହ௘ଵ଻ ௦యା ଵ.ଵଶଷ௘ଵ଼ ௦^ଶ ା ଶ.ହ଺ଽ௘ଵ଼ ௦ ା ଵ.଻ହସ௘ଵ଼ୱఴା ଺.଺଼ୣ଴ସ ୱళା ଵ.ସ଺଼ୣ଴ଽ ୱలା ଵ.଻଺ଽୣଵଷ ୱఱା ଵ.ହ଼ହୣଵହ ୱరା ହ.ଽ଼ଵୣଵ଺ ୱయାଵ.ଶଷୣଵ଼ ୱ^ଶ ା ଵ.ଶଵଶୣଵଽ ୱ ା ଵ.ହ଼ୣଵଽ  

(23) 

The controller ܭ  in standard feedback configuration is 

designed as  ܭ଴  . Then we can compare the transfer feature from r 

to y and d to y between standard feedback configuration and ܪஶ 

mix sensitivity controller on GIMC control structure. 

 

Figure 7: Robust stability information 

 

Figure 8: Nominal performance information 
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Figure 9: Temporal response of the loop system by a simple PI 

 

Figure 10: Temporal response of the loop system by a GIMC 
method 

 

Figure 11: Comparison of the temporal response of the loop 
system by a simple PI, with a time response to the GIMC loop 

system 

From the Figure 7, 8, 9, 10 and 11, we can know that 

performance of the ܪஶ  mix sensitivity controller on GIMC 

control structure is the same with the standard feedback 

configuration. Meanwhile, the disturbance rejection ratio of ܪஶ 

mix sensitivity problem on GIMC control structure improves a lot 

than the PI control structure.  

5. CONCLUSION 
In this paper, we propose an approach which using ܪஶ  mix 

sensitivity controller base on GIMC control structure to improve 

the external disturbance rejection ratio a lot in hydraulic actuator 

stabilization and tracking system. The results of the numerical 

simulation reveal that this method is a practical and effective way 

to restraining the external disturbance. 
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